por

12/03/18

Tags:
, , ,

Sigue a David Cano en:

LinkedIn Twitter Web

La simetría especular o la consecuencia de que la volatilidad sea volátil.

Tras mi último artículo, en el que expliqué cómo se calcula la volatilidad de un activo financiero, en este describo cómo la volatilidad no es constante en el tiempo, sino que varía en función de la fase en la que se encuentren los mercados financieros. Y es que en los mercados se produce la denominada “simetría especular”, es decir, una relación inversa entre precios y volatilidad. Así, las mayores subidas diarias de los índices bursátiles se producen en las fases correctivas, en las que se observan los denominados “cluster de volatilidad”.

Ya les decíamos (ver aquí)  que la forma más habitual de medir el riesgo de mercado de un activo es recurriendo a la estadística, en concreto, al cálculo de la desviación típica de los rendimientos. Y puse como ejemplo una muestra de precios de 10 sesiones. No existe consenso sobre el tamaño de la muestra para hacer el cálculo, lo que sin duda es un aspecto mucho más relevante de lo que se intuye. Y lo es porque “la volatilidad es volátil”, es decir, un mismo activo presenta diferentes niveles de volatilidad en diferentes momentos del tiempo (de ahí que el cálculo sea sensible a la ventana muestral usada). Para ilustrarlo, en el gráfico 1. se representa la variación diaria del Eurostoxx 50. Se aprecia que en ocasiones se producen períodos en los que las variaciones (al alza y a la baja) son de más intensidad, esto es, en los que asistimos a más volatilidad (cluster de volatilidad). Los hemos marcado con un rectángulo. Es obvio que el cálculo de la volatilidad será distinto si incluimos o no esos períodos.

Gráfico 1. Variaciones diarias del Eurostoxx 50 y cluster de volatilidad

 

En el gráfico 2 se representa la evolución de la volatilidad del Eurostoxx 50 calculada con distintas ventanas muestrales. Si utilizamos todos los datos entre enero de 1999 y diciembre de 2017, la volatilidad histórica es del 23,1%. A medida que vamos reduciendo el tamaño de la ventana, el resultado se vuelve más volátil. Por ejemplo, usando datos de 3 meses, la volatilidad oscila entre el 10% y el 60%, mientras que a 3 años lo hace entre el 12% y el 31%. ¿Cuál es el tamaño de la ventana recomendado? No existe una respuesta, sino que dependerá del horizonte temporal de inversión. Así, es habitual hacerlos coincidir. Para un inversor de muy corto plazo, resulta muy poco útil la volatilidad histórica, mientras que para uno a largo plazo, el dato calculado con la muestra del último mes, tampoco es representativa.

Gráfico 2. Evolución de la volatilidad del Eurostoxx 50 en distintas ventanas muestrales

 

En definitiva, la volatilidad depende del tamaño de la muestra utilizado y del momento en el que se haga el cálculo, dado que la volatilidad es volátil. ¿Y de qué depende? En gran medida, de la evolución del mercado: se produce la denominada “simetría especular”. Como si de un espejo se tratara, las alzas en las cotizaciones bursátiles se reflejan en una caída de la volatilidad, mientras que los momentos en los que los índices ceden, es habitual que nos encontremos en un cluster de volatilidad. Es decir, cuando los índices se revalorizan, las variaciones diarias son de menor intensidad que cuando caen. Es en las fases correctivas cuando se observan las mayores caídas (obvio), pero también las mayores subidas diarias (no tan obvio). Como veremos en la siguiente entrega, esto tiene claras implicaciones en la gestión de carteras y ayuda a entender ciertos fenómenos de los mercados (sobrerreacciones), ciertos “dichos” (la tendencia es tu amiga) y el fundamento del momentum.

Gráfico 3. Evolución del Eurostoxx 50 y de la volatilidad (ventana muestral 6m)

 

@david_cano_m